Characterization of cryopreserved primary human corneal endothelial cells cultured in human serum supplemented media

Lucas M. M. Vianna, MD1,2,3, Hao-Dong Li, BS1, Jeffrey D. Holiman, BS4, Christopher Stoeger, MBA, CEBT4, Rubens Belfort Jr, MD, PhD2, Albert S. Jun, MD, PhD1

1 Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA; 2 Department of Ophthalmology, Federal University of São Paulo/Paulista School of Medicine, São Paulo (SP), Brazil; 3 State University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil; 4 Lions VisionGift, Portland, Oregon, USA.

INTRODUCTION

Since Stocker et al.1 established human corneal endothelial cell (HCEC) culture, the potential for cell therapy for corneal endothelial dysfunction using HCECs has shown continuous evolution.2 The limitations associated with this therapy can basically be divided into two major areas: those related to culturing the cells, such as proliferation, cellular senescence, and fibroblastic transformation; and those related to the logistics and techniques for transplanting the cells.2

Regarding the first issue, we have recently published a paper showing the use of human serum supplemented media (HS-SM) instead of fetal bovine serum supplemented media (FBS-SM), suggesting some potential advantages of a media with fewer animal derived contents.3 Regarding the second issue, cryopreservation of corneas for transplant4 and of cultured HCEC using standard medium (FBS-SM) have already been shown5 and could potentially improve the logistics of distributing cultured HCECs for clinical use. The purpose of the present study is to determine the ability of HCECs grown in HS-SM to be cryopreserved and maintain their characteristics by comparing them to cryopreserved cells grown in FBS-SM.

MATERIALS AND METHODS

Three pairs of human corneas from donors aged 8, 28, and 31 years old were obtained from Lions VisionGift (Portland, OR) and the Alabama Eye Bank (Birmingham, AL). From each pair, one cornea was used to start a HCEC culture with HS-SM and the other cornea with FBS-SM. Upon reaching confluence, the 6 cell populations were frozen using 10% dimethyl sulfoxide containing medium (resumed methodology shown in Figure 1). Thawed cells grown in HS-SM were compared to FBS-SM by morphology (Figure 2), growth curves (Figure 3), immunohistochemistry (Figure 4), real time-reverse transcriptase polymerase chain reaction (RT-PCR) for endothelial cell markers (Figure 5), and detachment time (Figure 6).

Figure 1. Methodology of HCEC passages and their use. P: passage; FBS-SM: fetal bovine serum supplemented media; HS-SM: human serum supplemented media; RT-PCR: real-time polymerase chain reaction.

RESULTS

No difference in morphology could be seen for cells grown in the two media before or after cryopreservation. By growth curves, cell counts after thawing were similar in both media, with a slight trend toward higher cell counts in FBS-SM. Cells grown in both media showed similar expression of endothelial cell markers when assessed by immunohistochemistry, although the gene expression of HEC markers was higher in HS-SM when assessed by RT-PCR. There was a tendency of longer detachment time with FBS-SM and lower passages.

CONCLUSIONS

HS-SM was similar to FBS-SM for cryopreservation of cultured HCECs when assessed by cell morphology, proliferation, and protein expression, although marker gene expression by RT-PCR was higher in HS-SM compared to cells grown in FBS-SM. Detachment time was longer with FBS-SM and in lower passages.

REFERENCES


ACKNOWLEDGEMENTS

The authors acknowledge the Brazilian government CAPES Foundation and State University of Rio de Janeiro (Brazil) for providing Dr. Viana’s research fellowship, Norman Barker, MS, for assistance with the figures, and Lions VisionGift (Portland, OR) and the Alabama Eye Bank (Birmingham, AL) for providing corneas.

DISCLOSURES

The authors declare no commercial relationships relevant to this work.