

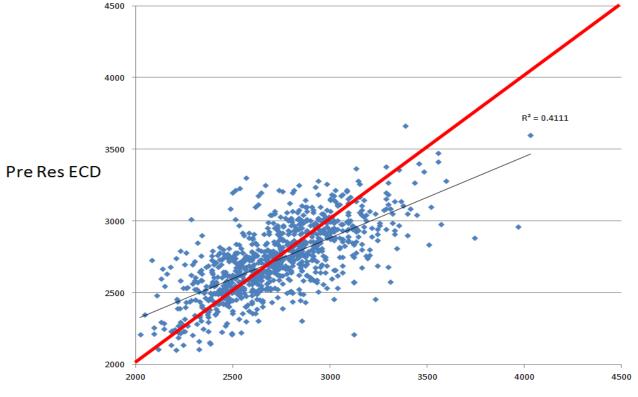
Truly Know your DMEK Graft: Can Pan-endothelial Damage Analysis In Association with Specular Microscopy Tell You More?

Joshua Galloway, CEBT Chris Stoeger, CEBT, Zachary Mayko, MS Jeff Holiman, CEBT,

Disclosures

 The authors have no financial interests to disclose

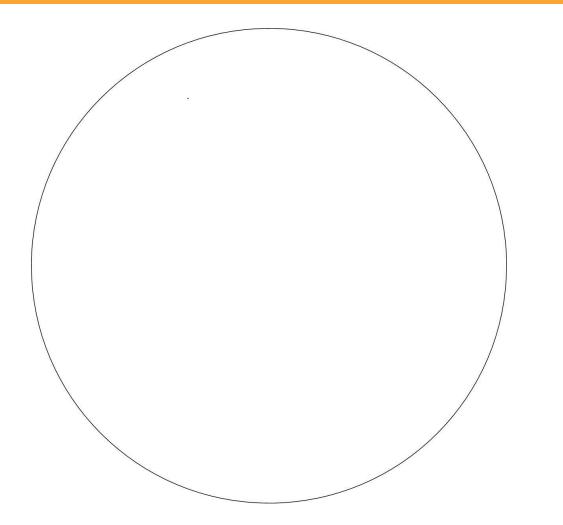
Background


Evaluation of Eye Bank Prepared DMEK Grafts to Determine Suitability for Transplantation

Chris Stoeger, CEBT, Neda Shamie, MD, Josh Galloway, CEBT, Mark Terry, MD, David Davis-Boozer, MS, Jeff Holiman, CEBT, Mike Straiko, MD Fall Education Symposium / Cornea Society 2009

Background

Post Res ECD



Introduction

- Specular microscopy combined with slit lamp examination is standard practice
 - Typically 50-100 cells are counted in each image
 - 1-3 images taken and densities are averaged
 - An 8mm graft with 2500 endothelial cell density (ECD) has 125,663 total cells
 - 2000 ECD = 100,530 cells
 - 3000 ECD = 150,796 cells
 - We are providing an ECD based on an average of .1% of the cells in a graft

ECD by specular microscopy

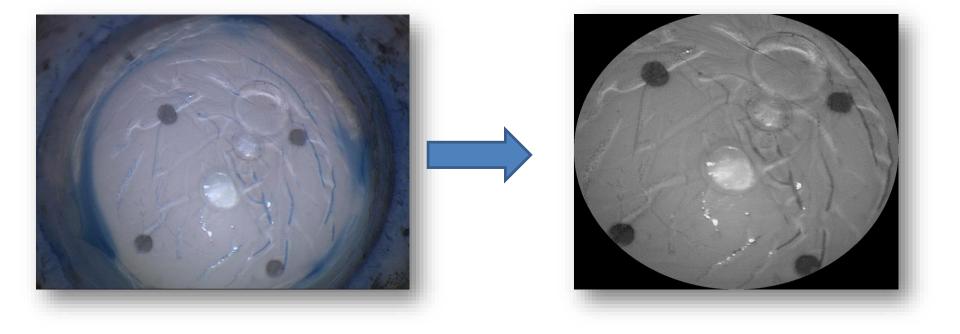
Introduction

- Is the standard method the most accurate final report of cell density?
- Is there a different method for obtaining cell counts on difficult to evaluate tissue post processing?
- How do we account for cell loss and damage when reporting endothelial cell densities to the transplanting physician?

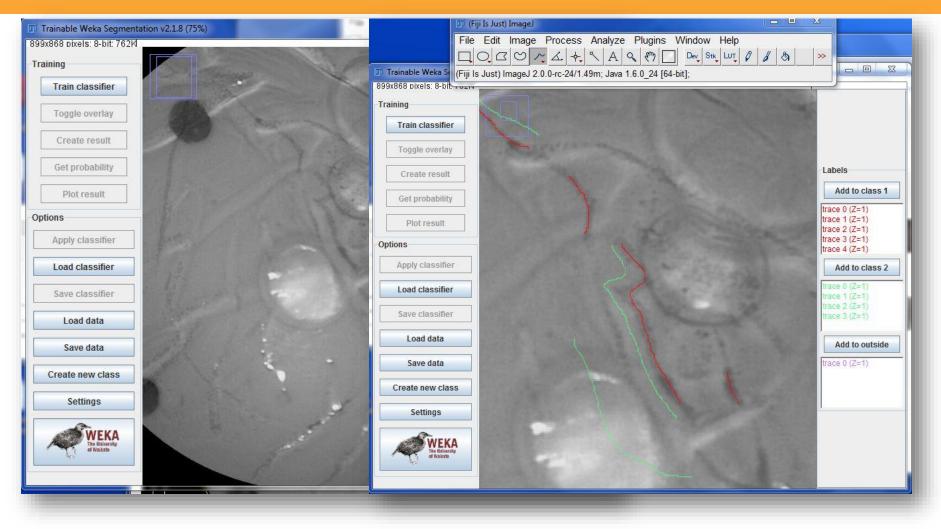
Methods

• Peripheral hinge

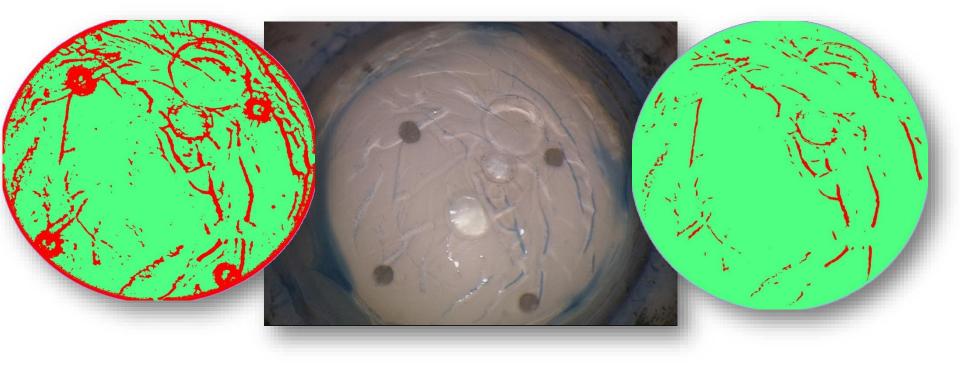
Stained with Trypan Blue


• Rinsed with BSS

Imaged and analyzed with Fiji



Fiji Trainable Software


Fiji Trainable Software

Jardine, et al. Current Eye Research, 2014.

Fiji Trainable Software

Comparison

Damage	Pre ECD	Predicted ECD	Post ECD	Difference	%Difference
4.1%	2475	2374	2618	244	9.3%
4.2%	2336	2238	2755	517	18.8%
3.0%	2825	2741	2786	45	1.6%
4.2%	2809	2691	2710	19	0.7%
5.8%	3165	2981	3040	59	1.9%
4.4%	3115	2978	2959	-19	-0.6%
10.7%	3030	2706	2660	-46	-1.7%
2.8%	2994	2910	3030	120	4.0%
3.5%	2591	2500	2725	225	8.2%
4.7%	3040	2897	2618	-279	-10.7%
					P = .21

Predicted ECD = (% damage) (Pre ECD)

Predicted ECD compared to Post processing ECD for level of significance

Results

- Mean ECD values by specular microscopy: – 2790 ± 162
- Mean ECD by pan-endothelial cell damage analysis:

-2701 ± 258 (p=.21)

 4/10 grafts showed 8% or greater differences than reported ECD values (8-19%)

Conclusions

- The small size of the study may be a reason for limited variation
- While there is no statistical difference, some cases show the ECD as reported increased while damage analysis indicates we should expect a lower ECD.
- ECD Damage analysis more accurately reflects the true endothelial cell density at time of transplant than specular imaging alone.
- Clinical indication remains unclear and further investigation seems warranted

